Posts

  • Replica method and random matrices (II)

    \(\def\cP{\mathcal P}\) \(\def\de{\text{d}}\) \(\def\N{\mathbb N}\) \(\def\P{\mathbb P}\) \(\def\bi{\boldsymbol i}\) \(\def\bG{\boldsymbol G}\) \(\def\bsigma{\boldsymbol \sigma}\) \(\def\bv{\boldsymbol v}\) \(\def\bu{\boldsymbol u}\) \(\def\bt{\boldsymbol t}\) \(\def\bw{\boldsymbol w}\) \(\def\sT{\mathsf T}\) \(\def\bW{\boldsymbol W}\) \(\def\bA{\boldsymbol A}\) \(\def\R{\mathbb R}\) \(\def\S{\mathbb S}\) \(\def\GOE{\text{GOE}}\) \(\def\|{\Vert}\) \(\def\bx{\boldsymbol x}\) \(\def\cN{\mathcal N}\) \(\def\E{\mathbb E}\) \(\def\de{\text{d}}\) \(\def\vphi{\varphi}\) \(\def\bQ{\boldsymbol Q}\) \(\def\diag{\text{diag}}\) \(\def\bzero{\boldsymbol 0}\) \(\def\id{\mathbf I}\) \(\def\ones{\mathbf 1}\) \(\def\ext{\text{ext}}\) \(\def\|{\Vert}\) \(\def\bLambda{\boldsymbol \Lambda}\) \(\def\const{\text{const}}\) \(\def\Unif{\text{Unif}}\) \(\def\bSigma{\boldsymbol \Sigma}\) \(\def\C{\mathbb C}\) \(\def\tr{\text{tr}}\) 1. Introduction In my previous post, we saw how to use the replica method... … read more »
  • Replica method and random matrices (I)

    \(\def\blambda{\boldsymbol \lambda}\) \(\def\bX{\boldsymbol X}\) \(\def\N{\mathbb N}\) \(\def\P{\mathbb P}\) \(\def\bi{\boldsymbol i}\) \(\def\bG{\boldsymbol G}\) \(\def\bsigma{\boldsymbol \sigma}\) \(\def\bv{\boldsymbol v}\) \(\def\bu{\boldsymbol u}\) \(\def\sT{\mathsf T}\) \(\def\bW{\boldsymbol W}\) \(\def\bA{\boldsymbol A}\) \(\def\R{\mathbb R}\) \(\def\S{\mathbb S}\) \(\def\GOE{\text{GOE}}\) \(\def\|{\Vert}\) \(\def\bx{\boldsymbol x}\) \(\def\cN{\mathcal N}\) \(\def\E{\mathbb E}\) \(\def\de{\text{d}}\) \(\def\vphi{\varphi}\) \(\def\bQ{\boldsymbol Q}\) \(\def\diag{\text{diag}}\) \(\def\bzero{\boldsymbol 0}\) \(\def\id{\mathbf I}\) \(\def\ones{\mathbf 1}\) \(\def\ext{\text{ext}}\) \(\def\|{\Vert}\) \(\def\bLambda{\boldsymbol \Lambda}\) \(\def\const{\text{const}}\) \(\def\Unif{\text{Unif}}\) \(\def\bSigma{\boldsymbol \Sigma}\) 1. Introduction In my first several posts, I will discuss about the replica method. The replica method is a non-rigorous... … read more »
  • The topics of this Blog

    Hello everyone, I am starting my research blog today. In my first several posts, I will discuss about methods from statistical physics, with applications to random matrix theory. Hope you will have fun! … read more »